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Abstract

Since brain network organization is essentially governed by the harmonic waves derived from 

the Eigen-system of the underlying Laplacian matrix, discovering the harmonic-based alterations 

provides a new window to understand the pathogenic mechanism of Alzheimer’s disease (AD) 

in a unified reference space. However, current reference (common harmonic waves) estimation 

studies over the individual harmonic waves are often sensitive to outliers, which are obtained by 

averaging the heterogenous individual brain networks. To address this challenge, we propose a 

novel manifold learning approach to identify a set of outlier-immunized common harmonic waves. 

The backbone of our framework is calculating the geometric median of all individual harmonic 

waves on the Stiefel manifold, instead of Fréchet mean, thus improving the robustness of learned 

common harmonic waves to the outliers. A manifold optimization scheme with theoretically 

guaranteed convergence is tailored to solve our method. The experimental results on synthetic data 

and real data demonstrate that the common harmonic waves learned by our approach are not only 

more robust to the outliers than the state-of-the-art methods, but also provide a putative imaging 

biomarker to predict the early stage of AD.
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I. Introduction

ALZHEIMER’S disease (AD), characterized by memory loss and cognitive abnormalities, 

is one of the most common forms of dementia [1], [2]. The World Alzheimer Report 2018 

[3] reported that there are 50 million people all the world lived with dementia. As a result, 

the sustainable development of society is affected. More importantly, the neuropathological 

mechanism of AD is still unknown, and no treatment has been developed to reverse or stop 

the progression of AD [4], [5]. Therefore, an increasing number of studies have turned their 

attention to predicting AD at an early stage so that appropriate interventions can be used 

to slow down its progression [6]. Mild cognitive impairment (MCI) is a mid-prodromal 

period of memory impairment that is often considered a transitional state from a healthy 

individual to an individual with AD [7]. The accurate identification of MCI patients who 

will progress to AD is essential to exert possible therapeutic interventions to delay this 

progression. However, the early prediction of AD remains a difficult challenge, since MCI 

exhibits substantial individual heterogeneity and mild symptoms.

Abnormal connectivity between distinct brain regions manifests much earlier than the 

emergence of the earliest symptoms of AD; thus, accurately identifying brain network 

changes facilitates the early prediction of AD [8]. The rapid development of noninvasive 

neuroimaging and neurophysiological techniques allows us to capture multimodal brain 

images from the same samples, providing an efficient, feasible, and noninvasive way to 

investigate structural brain connectivity in vivo, which is consisted of the number of white 

matter fiber connections between underlying regions of interest (ROIs) [9], [10].

Due to the high dimensionality of brain connectome data, it is a common practice to 

analyze node-wise graph variables such as local clustering coefficient, centrality, efficiency, 

modularity and small-worldness, instead of using whole-brain connectivity information. 

For instance, He et al. [11] found increased clustering coefficient and shortest paths 

in AD, implying an abnormal small-world property; Yao et al. [12] found the greatest 

clustering coefficient and the longest absolute path length in AD; Tijms et al. [13] found 

decreased small-world index in AD; Pereira et al. [14] found that all patient groups exhibited 

increased path length, reduced transitivity, and increased modularity, and the patient group 

showed decreased small-world index. By doing so, however, it becomes difficult to discover 

topological patterns which is an essential aspect of network analyses [15]. Furthermore, 

brain network changes have been proven to be correlated with the underlying structural 

pathology [16]. In addition, the unique propagation patterns in existing large-scale brain 

networks mainly drive the abnormal deposition of AD pathologies [17], [18], [19], [20]. 

There are an increasing number of brain network analyses focusing on investigating the 

attributes of brain networks [21], [22], [23], [24], [25].

Recently, many studies have applied the graph Laplacian operator to the adjacency matrix of 

each individual brain for the purpose of studying the spreading process of neuropathological 
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events of neurodegenerative diseases [26], [27], [28]. The eigensystem of the underlying 

Laplacian matrix, which is referred to as harmonic waves in this paper, reveals the 

propagation property of the brain network [29], [30], [31] (shown in the left part of 

Fig. 1). Combined with the orthogonality of harmonic waves, it is possible to distinguish 

different clinical cohorts by examining alterations based on harmonic waves. In summary, 

common harmonic waves obtained by unifying individual eigensystems are required to 

achieve classification. Although treating the high-dimensional brain networks as regular 

matrices and applying Euclidean algebra to them to obtain the average brain network is 

straightforward, such an approach destroys the essential network topological structure of the 

resulting group-mean brain network (demonstrated in the upper right of Fig. 1). Since each 

eigensystem of the brain network is an orthogonal matrix, which is considered to be a point 

on the Stiefel manifold, it provides the possibility to estimate the common harmonic waves 

by finding the manifold center of all those individual eigensystems on the Stiefel manifold, 

as illustrated in the lower part in Fig. 1. To this end, the manifold analysis methods are 

proposed to solve the eigensystem on the manifold. For example, Huang et al. [32] proposed 

polynomial expansion method of the Laplace-Beltrami operator to obtain the eigensystem 

and use it to solve heat diffusion on a manifold. Chen et al. [33] proposed a manifold-based 

harmonic network analysis approach to identify a set of region-adaptive harmonic wavelets 

that represent the common network topology across individuals.

However, the methods mentioned above ignore the influence of outliers. The outliers 

in brain network data will severely affect the estimation of manifold centrality. A 

straightforward solution is outlier deletion; however, this approach is not appropriate for 

the analysis of a few brain network samples [34]. In this regard, Chen et al. [35] proposed 

the estimation of the common harmonic waves by calculating the Fréchet mean, where 

each single harmonic wave represents a unique brain network neuropathological burden 

spreading pattern. Unfortunately, the Fréchet mean is sensitive to outliers since any point 

located on the manifold is dragged to infinity without bound. Therefore, designing an 

outlier-immunized center estimator to identify the common harmonic waves on a Stiefel 

manifold remains unsolved.

To address this challenge, instead of using a rigid averaging operation on Euclidean space, 

as demonstrated in Fig. 1, we propose a novel manifold harmonic learning approach 

to derive outlier-immunized common harmonic waves for each individual wave on a 

Stiefel manifold. Our method aims to calculate the geometric median of the population 

harmonic waves, which is formulated as an optimization problem to find manifold centers 

by minimizing the geodesic distance across all individual waves on the Stiefel manifold. 

Numerical schemes are designed to iteratively solve the minimization problem on the 

manifold, and its convergence is theoretically proven. We show that the geometric median 

is a robust estimator of centrality and thus avoids outlier corruption. After obtaining the 

common harmonic waves of the network population, we assess its statistical performance 

on both synthetic data and ADNI neuroimaging data. Extensive experiments on synthetic 

data have demonstrated that our proposed method achieves superior identification accuracy 

in estimating the common harmonic waves containing an increased number of brain network 

outliers. For real data, our manifold learning approach achieves higher discriminatory 

power than the other comparative methods in distinguishing cognitively normal (CN), 
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early-stage mild cognitive impairment (EMCI), and late-stage mild cognitive impairment 

(LMCI). Finally, we identify a set of neuroimaging biomarkers derived from the significant 

common harmonic waves that are highly associated with the mini-mental state examination 

(MMSE) score, a clinical test to measure cognitive impairment. Our study provides three 

main contributions:

1. We develop a novel manifold learning approach to estimate outlier-immunized 

common harmonic waves by calculating the geometric median, which shows 

better robustness to outliers than arithmetic mean or Fréchet mean in 

constructing the group mean.

2. A specialized manifold optimization algorithm for our proposed method is 

designed to ensure that the optimal numerical solution is obtained. Its theoretical 

proof of convergence is elaborated.

3. Extensive experiments demonstrate that our method not only achieves higher 

diagnostic performance than other baseline methods but also identifies a new 

neuroimaging biomarker to predict the risk of progressing AD at the preclinical 

phase.

The organization of this article is as follows. The proposed method and its theoretical 

convergent-guaranteed numerical scheme are introduced in Section II. Extensive 

experiments on synthetic data and ADNI neuroimaging data are presented in Section III. 

A further discussion of the proposed method and experimental results is proposed in Section 

IV. The conclusion is given in Section V.

II. Method

The problem statement and mathematical modeling for estimating the outlier-immunized 

common harmonic waves is first explained in Section II-A. Then, the common harmonic 

wave optimization scheme is presented in Section II-B. Finally, the application of harmonic 

wave analysis is given in Section II-C. The notation is summarized in Table I.

A. Problem Statement and Mathematical Modeling

Generally, we adopt a graph representation G = (V , ε, W ) to encode a complex brain 

network, where V = {vi ∣ i ∈ 1, …N} is the node set, and N stands for the number of nodes. 

Edge set ε = {eij ∣ vi, vj} represents the set of all possible connections between nodes. The 

weighted adjacency matrix W = [wi, j]N × N ∈ ℝN × N is used to store the connection strength 

between node i and node j.

The individual harmonic waves Φ ∈ ℝN × P , which is the eigensystem of the Laplacian 

matrix, can be solved by the following minimization [35]:

min
Φ ∈ ℝN × P

Tr (ΦT L Φ) s . t . ΦTΦ = IP (1)
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where Tr( ⋅ ) stands for the trace norm and IP ∈ ℝP × P  is the identity matrix. A symmetry 

graph Laplacian matrix can be obtained by L = D − W , where D is the diagonal matrix. 

Each diagonal element D(i, i) = ∑j = 1
N wij in matrix D is represented as the summation of 

the connection strength between node i and its connected nodes. Note that the individual 

harmonic waves Φ = {φ1, φ2, …, φP} are sorted column by column from low to high 

frequency {λp ∣ p = 1, …, P ,λ1 ≤ λ2 ≤ ⋯ ≤ λP} [36], showing that as the eigenvalue increases, 

the harmonic wave exhibits faster oscillatory patterns. We only reserve the top P (P < N)
harmonic waves for each brain network, since the higher frequency harmonic waves tend 

to be sensitive to potential noise. Assuming that a set of individual harmonic waves Φ is 

an orthogonal matrix of N × P , Φ derived from a single brain network is reasonable to be 

treated as an instance on the Stiefel manifold [37].

Given the m brain network Gs(s = 1, …, m), the individual harmonic waves Φs can be 

optimized based on the energy function in (1). Our goal is to estimate the common 

harmonic waves Ψ by unifying the individual eigensystems from individual harmonic waves 

{Φs ∣ s = 1, …, m}. Specifically, we estimated the common harmonics by finding the Fréchet 

mean, which has the shortest l2-norm geodesic distances to all observation points residing on 

the Stiefel manifold. Since Fréchet mean has been shown to be susceptible to outliers [34], 

we adopted a geometric median estimator to address this impact. This estimator can be used 

to effectively reduce the influence of outliers by calculating the l1-norm geodesic distance 

instead of the l2-norm geodesic distances. Therefore, the geometric median can be obtained 

by minimizing the summation of the l1-norm geodesic distances to all individual harmonic 

waves {Φs},

arg min
Ψ

∑
s = 1

m
d (Φs, Ψ) = arg min

Ψ
∑

s = 1

m
P − Tr (Φs

TΨ) (2)

where d( ⋅ ) represents the l1-norm geodesic distance, which is approximated by 

d(Φs, Ψ) = P − Tr(Φs
TΨ) [35]. As a result, by combining (1) and (2), the objective function is 

formulated as:

min
{Φs}, Ψ

∑
s = 1

m
Tr (Φs

T LsΨs) + β P − Tr (Φs
TΨ)

s.t. ∀s : Φs
TΦs = IP

(3)

where β is a scalar balancing of two terms in (3). The first term is used to ensure 

that each individual harmonic wave Φs retains the topological structure of its own brain 

network. The second term ensures that the estimated common harmonic waves Ψ have the 

shortest geodesic distance summation to all individual harmonic waves {Φs}. The orthogonal 

constraint term can guarantee that all adjusted individual harmonic wave {Φs} is still located 

on the Stiefel manifold.
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B. Numerical Scheme

We propose using the gradient descent method under the alternating direction method of 

multipliers (ADMM) framework on the manifold [35] to solve the problem. Rewriting the 

constrained problem as an unconstrained minimization problem, the Lagrangian function is 

obtained as follows:

min
{Φs}, Ψ

∑
s = 1

m
FΦs, Ψ = min

{Φs}, Ψ
∑

s = 1

m
Tr (Φs

T LsΦs)

+β P − Tr (Φs
TΨ) + Tr (Λs

T (Φs
TΦs − IP))

(4)

where Λs is the Lagrangian matrix.

We solve the Lagrangian function in (4) by the following two steps.

Step 1: Optimize all individual harmonic waves {Φs} by fixing the common 

harmonic waves Ψ: Since each individual harmonic wave Φs is independent, we can 

optimize each individual harmonic wave Φs separately by simplifying (4) as:

min
Φs

FΦs = min
Φs

{Tr (Φs
T LsΨs)

+ β P − Tr (Φs
TΨ) + Tr (Λs

T (Φs
TΦs − IP))}

(5)

By setting the gradient ∇F  to zero, we obtain:

∂FΦs

∂Φs
= 2LsΦs − βINΨ

2 (P − Tr (Φs
TΨ))

+ 2ΦsΛs
T = 0 (6)

Since the objective function (5) is nonconvex and the Karush Kuhn Tucker (KKT) condition 

(6) with the square root term as the denominator is hard to solve, we adopt the following 

method [38], [39] to solve (5).

By introducing a specific Lagrangian multiplier θ for the third item, we obtain a partial 

Lagrangian relaxation (PLR, fθ(Φs)) form for the energy function (5):

min
Φs

{Tr (LsΦsΦs
T)

+ β Tr (IP − Φs
TΨ) + θ (P − Tr (Φs

TΦs))

s.t.
IN Φs

Φs
T IP

≻ 0

(7)

By choosing appropriate Lagrangian multiplier θ [40], fθ(Φs) is a convex conic program 

problem that can be easily solved by the Frank-Wolfe algorithm [41], [42]. The procedure of 

optimizing individual harmonic waves Φs includes the following four steps:

Cai et al. Page 6

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. Initialize the parameters i = 1, H = 100.

2. Update θi θmin + (i − 1)θmax − θmin
H , i = 1, …, H

3. Apply the Frank-Wolfe algorithm to obtain an optimal solution Φs
∗ of the 

Lagrangian function fθi(Φs) regarding θi.

4. Iteratively perform steps (2)-(3) until the {Φs
∗}T Φs

∗ = IP constraint is satisfied.

Step 2: Optimize common harmonic waves Ψ while fixing all individual 

harmonic waves {Φs}: Given all adjusted individual harmonic waves {Φs}, estimating the 

common harmonic waves Ψ falls into solving the geometric median on the Stiefel manifold. 

The objective function of solving common harmonic waves Ψ becomes:

min
Ψ

FΨ = min
Ψ

∑
s = 1

m
d (Φs, Ψ)

= min
Ψ

∑
s = 1

m
P − Tr (Φs

TΨ)
(8)

Therefore, we can adopt the Weiszfeld algorithm [43] to efficiently solve the problem in (8) 

by alternately performing the following two steps until convergence:

1. Given the k-th estimated manifold center Ψ(k) (purple circle in Fig. 2), the 

gradient of the energy function d(Φs, Ψ(k)) at Ψ(k) on the Stiefel manifold can be 

calculated as ∇Ψ(k)d(Φs, Ψ(k)) ∈ TΨ(k)ℳ, where TΨ(k)ℳ is the tangent plane at Ψ(k)

(shown as the green flat plane in Fig. 2). Therefore, we can obtain the manifold 

gradient ∇Ψ(k)d(Φs, Ψ(k)) = (Ψ(k)Φs
TΨ(k) − Φs) ∕ P − Tr(Φs

TΨ(k)) by [43] (blue solid 

arrow in Fig. 2). Finally, the mean tangent ΔΨ(k + 1) ∈ TΨ(k)ℳ (red triangle in 

Fig. 2) is:

ΔΨ(k + 1) = − ∇Ψ(k) ∑
s = 1

m
d (Φs, Ψ(k))

= − ∑
s = 1

m Ψ(k)Φs
TΨ(k) − Φs

P − Tr (Φs
TΨ(k))

(9)

2. Map ΔΨ(k + 1) back to the Stiefel manifold by the Riemannian exponential map 

in (10) to obtain the updated manifold center (red circle in Fig. 2).

Ψ(k + 1) = expΨ(k) γΔΨ(k + 1)
(10)

It is worth noting that our proposed method penalizes the tangent vectors of outlier in the 

optimization process, as shown by the black solid arrow in Fig. 2, because they have a larger 

distance to the underlying manifold center. This property makes our proposed method more 
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robust to outlier influence than other approaches. Finally, the entire optimization scheme 

is summarized in the algorithm 1. We also discuss the parameter tuning, computational 

complexity analysis, and convergen analysis of our proposed method in section IV.
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Algorithm 1: Parameters: β = 0.1; ϵ = 0.01; ε1 = 0.01; ε2 = 0.01; γ = 0.01; H = 100.

Input:Adajacency matrix W s ∈ ℝN × N, s = 1, 2, …, m
Calculate Laplacian matrix Ls = Ds − W s

Initialize orthogonal matrix Φs ∈ ℝN × P through the
Eigen‐decomposition of Laplacian matrix Ls

Initialize common network harmonic waves:

Ψ = eig( 1
m ∑s = 1

m Ls) ∈ ℝN × P

1: while ε is less than a pre‐defined threshold ε1 do
2: for s = 1 :m do
3: for i = 1 :H do
4: Initialize parameter:
5: t = 1, LBt = − 1, Φs

t = Φs,

θi = θmin + (i − 1)θmax − θmin
H

6: while fθ(Φs
t) − LBt

fθ(Φs
t) + 1

> ϵ ‖ t < 100 do

7: Φs
t = U( − δij)N × PV T

8: where the U and V is from the single value

decomposition ∇ fθ(Φs
t) = UΣV T .

9: Update the lower bound:

10: LBt = Tr(∇ f(Φs
t)T (Φs

t − Φs
t)) + f(Φs

t)
11: Line search:
12: α∗ = arg minα ∈ [0, 1] fθ(Φs

t + α(Φs
t − Φs

t))

13: Φs
t + 1 = Φs

t + α∗(Φs
t − Φs

t), t = t + 1
14: end while

15: if Φs
t TΦs

t = IP then
16: Φs

∗ = Φs
t , break .

17: end if
18: end for
19: end for

20: Set start point Ψ(1) = Φ1
∗

21: while ΔΨ(k) < ε2 do

22: ΔΨ(k + 1) = − γ∑s = 1
m (Ψ(k)Φs

∗ TΨ(k) − Φs
∗)

P − Tr(Φs
∗ TΦ(k))

23: Ψ(k + 1) = expΨ(k)ΔΨ(k + 1), k = k + 1
24: end while

25: Update Ψ∗ = Ψ(k + 1)

26: Compute Newcost =

27: ∑s = 1
m {Tr(Φs

∗ TLsΦs
∗) + βd2(Ψ∗, Φs

∗)}
28: ε = abs(Newcost − Oldcost)
29: Update Oldcost = Newcost

30: end while

Output:Common harmonic waves Ψ∗

Cai et al. Page 10

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. Harmonic Waves Analysis

Empirical biomarkers (e.g., amyloid or tau deposition) are typically applied to predict 

early-stage AD in the traditional neuroimaging studies. Those empirical biomarkers can 

always be denoted as a column vector f ∈ ℝN for each subject. Nowadays, manifold 

harmonic analysis is proposed to identify the harmonic-based alterations, which are related 

to the propagation pathways of neuropathological burdens. Therefore, the outlier-immunized 

common harmonic waves Ψ learned by our proposed method can be used to develop a new 

neuroimaging biomarker for each instance f by:

E(ψp) = ∣ 〈f, ψp〉 ∣2 (11)

Using the physics concept of harmonics, each E(ψp) presents the harmonic energy 

propagating the neuropathology burden f through the underlying harmonic wave ψp. In 

Section III-C2, we demonstrate that our proposed new neuroimaging biomarkers achieve 

enhanced performance in group stratification than existing empirical biomarkers.

III. Experiments and Results

To evaluate the performance of our proposed harmonic analysis method, we compare the 

common harmonic waves optimized by our approach with the benchmark and the other 

groups of harmonic waves generated by the following methods: 1) Traditional method Ψo: 

directly using the empirical biomarkers for classification; 2) Arithmetic mean Ψa: simply 

averaging individual eigenvectors; 3) Pseudo manifold mean Ψp: applying singular value 

decomposition (SVD) to the Laplacian matrix of the average adjacency matrix [30]; 4) 

Polynomial approximation Ψc: the polynomial approximation of the average of Laplace-

Beltrami operator [32]; 5) Fréchet mean Ψf: estimating the Fréchet mean of all individual 

harmonic waves [35]. In addition, we refer to our method as the geometric median Ψg.

In our experimental setting, we first measure the performance of our manifold learning 

method in estimating the common harmonic waves in terms of outliers in Sections III-B1 

and III-B2. Then, the replicability of our learned common harmonic waves is evaluated in 

Section III-C1. Next, the diagnostic ability of our proposed new neuroimaging biomarkers 

in classifying CN, EMCI and LMCI subjects is investigated in Section III-C2. Furthermore, 

the outlier-immunized common harmonic waves are applied to discover harmonic-based 

alterations (significant neuroimaging biomarkers) in Section III-C3. Finally, we apply the 

general linear model (GLM) to evaluate the association between significant neuroimaging 

biomarkers and MMSE score in Section III-C4.

A. Image Acquisition and Data Preprocessing

We have collected neuroimaging data in the ADNI database, including T1-weighted 

magnetic resonance imaging (T1-weighted MRI) and diffusion tensor imaging (DTI) images 

from 94 subjects. First, according to a Desctrieux atlas [44], we parcellate the cortical 

surface into 148 cortical regions based T1-weighted MRI images. Second, a 148×148 

anatomical connectivity matrix is produced by applying surface seed-based probabilistic 
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fiber tractography on the DTI images. Finally, the structural brain network is derived from 

the anatomical connectivity matrix, where the weight of the anatomical connectivity is 

defined by the number of fibers linking two brain regions normalized by the total number 

of fibers in the whole brain [44]. The outlier-immunized common harmonic waves Ψ are 

estimated by applying our proposed harmonic learning approach on above neuroimaging 

data. After obtaining the common harmonic waves Ψ, there are another three ADNI datasets 

selected for group comparison. The imaging modalities of those three datasets are amyloid-

PET, tau-PET and FDG-PET respectively, and the statistical information is in Table II. For 

PET imaging data, the cortical surface was parcellated into 148 structural brain regions, thus 

the standard update value ratio (SUVR) for each region is assembled into the column vector 

f.

B. Experiments on Synthetic Data

1) Evaluating the Accuracy of Common Harmonic Waves: Here, we are 

interested in evaluating the accuracy of identifying manifold centers vias different methods, 

including the arithmetic mean Ψa, the Fréchet mean Ψf, and our geometric median Ψg. In this 

context, we generate a series of low-dimensional synthetic data by the following steps. We 

randomly synthesize fifteen three-dimensional orthonormal matrices as individual harmonic 

waves (in blue in Fig. 3) and two matrices as outliers (in yellow in Fig. 3), which can be 

represented as the points located on the Stiefel manifold (shown in Fig. 3(e)). Specifically, 

we first provide the ground truth (identity matrix), which is displayed in green in Fig. 3(a). 

Then, the orthonormal matrices are obtained by rotating the identify matrix with a given 

rotation axis and angles. The rotation angles are sampled from the Gaussian distribution with 

mean μ = 0 and standard deviation ξ = π/15.

Since the adjacency matrices are not provided in synthetic data, the pseudo manifold mean 

Ψp is not appropriate for comparison here. Consequently, the manifold centers (common 

harmonic waves) evaluated via the arithmetic mean Ψa, the Fréchet mean Ψf, and our 

geometric median Ψg from above-mentioned seventeen orthonormal matrices (including two 

outliers) are exhibited in Fig. 3(b), (c) and (d), respectively. It is apparent that 1) the 

geometric median Ψg is much closer to the ground truth than the other manifold center 

estimation methods; 2) the arithmetic mean Ψa is outside the Stiefel manifold, indicating that 

the arithmetic mean is no longer an orthogonal matrix; and 3) the geometric median can 

quickly converge to the potential manifold center and be more robust to the outlier issue than 

the Fréchet mean, as illustrated in the purple (Fréchet mean) and red (geometric median) 

convergence trajectories in Fig. 3(e).

2) Evaluating the Robustness to Outliers: In this section, to further evaluate the 

performance of our method on the outlier issue, we construct an experiment to estimate the 

accuracy of the manifold center estimation by gradually increasing outliers. Specifically, 

we repeat the following procedure 100 times: 1) we generate 100 three-dimensional 

orthonormal matrices (including t% random outliers) based on the processing steps 

described in Section III-B1; 2) we apply our method and Ψf to these orthonormal matrices to 

estimate the manifold center; we calculate the accuracy by calculating the l1-norm geodesic 

distance between the estimated center and ground truth. Finally, the accuracy (mean and 
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standard deviation) for estimating the manifold center with a proportion of outliers ranging 

from 0.02 to 0.35 is plotted in Fig. 4.

The experimental results demonstrate that 1) the l1-norm geodesic distance between the 

manifold center detected by our geometric median and ground truth is significantly smaller 

(p < 0.0001) than that of the Fréchet mean, indicating that our method outperforms the 

Fréchet mean in identifying manifold centers; 2) with the increase in the outliers, the 

accuracy of the Fréchet mean drops sharply, while our method can maintain a high accuracy, 

indicating that our method has better robustness than the Fréchet mean in terms of outliers.

C. Experiments on the ADNI Dataset

1) Evaluating the Replicability of Common Harmonic Waves: In this experiment, 

we construct a reproducible experiment to evaluate the stability of our proposed method 

in discovering common harmonic waves. Specifically, we generate 100 test/retest datasets 

by the following resample procedure: 1) we select 60 brain networks from the total 94 

brain networks as a common group and 20 subjects from the remaining 34 subjects for 

subsequent analysis; 2) we divide the 20 subjects into two specific groups, where each 

group includes 10 subjects; 3) we combine the common group and two specific groups to 

form two paired cohorts, each with 70 subjects. Finally, we evaluate the common harmonic 

waves by the proposed method on these two datasets independently. Since two cohorts have 

more than 80%(10/70) overlapped brain networks, we can assume that similar common 

harmonic waves should be obtained by applying our method to these two cohorts. In this 

context, we evaluate replicability by testing whether each element in the harmonic matrix 

was significantly different (p < 0.01) via the paired t-test. Since each specific brain region 

corresponds to a row in the harmonic matrix, we count the number of elements that fail the 

replicability test at each row and map them to the cortical surface, as shown in Fig. 5.

From the experimental results, we observe that 1) the pseudo manifold mean Ψp achieves 

the worst replicability performance; 2) geometric median Ψg has a smaller number of brain 

regions that fail the replicability test than the Fréchet mean Ψf, indicating that geometric 

median has enhanced performance in replicability; 3) the arithmetic mean Ψa achieves 

similar replicability performance as our method, however, the orthogonality of arithmetic 

mean is often not guaranteed, as demonstrated in Fig. 3(b). Such nonorthogonality of 

the arithmetic mean will destroy the topological structure of the brain network, thereby 

affecting the classification performance, which will be demonstrated in Section III-C2; 4) 

though the polynomial approximation Ψc shows equivalent replicability as our method, the 

replicability of the left brain part of the polynomial approximation Ψc is far from the right 

brain part. Compared with the pseudo manifold mean Ψp, the polynomial approximation Ψc

greatly improves the replicability, which indicates that the polynomial approximation has a 

promoting effect on replicability.

2) Evaluating the Diagnostic Performance of Common Harmonic Waves: In 

this section, we estimate the diagnostic potential of our proposed neuroimaging biomarkers 

in CN, EMCI, and LMCI stratification. Since the traditional neuroimaging analysis methods 

widely use the region-wise SUVR score calculated from PET imaging data to predict 
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the early-stage AD, these empirical biomarkers can serve as benchmark to measure our 

neuroimaging biomarkers. In addition, the harmonic features extracted by the arithmetic 

mean Ψa, the pseudo manifold mean Ψp, the Fréchet mean Ψf, and the polynomial 

approximation Ψc are also compared with our proposed method in this experiment. 

Specifically, the linear support vector machine (SVM) classifier is trained independently 

using the empirical biomarkers and neuroimaging biomarkers as input. Then, we can obtain 

the area under the receiver operating characteristic (AUROC) curve and area under the 

precision-recall (AUPR) curve scores using 10-fold cross-validation.

The Fig. 6 shows the classification results of different neuroimaging biomarkers and 

empirical biomarkers on three group comparisons (CN/EMCI, EMCI/LMCI, and CN/LMCI) 

in PET imaging data. It is clear that 1) the neuroimaging biomarkers based on geometric 

median Ψf achieve the best classification performance (highest AUROC and AUPR scores) 

over all other methods for three different PET imaging data, where star ‘*’ or ‘**’ indicates 

that our results are significantly better than those of the compared methods with p < 0.1 or 

p < 0.01 based on the between-area correlation; 2) the Stiefel means, including the Fréchet 

mean Ψf and the geometric median Ψg, outperform other means estimated in Euclidean 

space; 3) the performance of polynomial approximation Ψc is similar as the Fréchet mean Ψf, 

but it is still secondary to our approach; and 4) the AUROC and AUPR scores on FDG-PET 

data are lower than the other two PET imaging data (amyloid-PET and tau-PET). This is 

mainly because the FDG energy differences among CN, EMCI and LMCI are too small 

to influence the classification performance, which will be shown in Fig. 7. However, our 

proposed neuroimaging biomarkers still achieve higher classification accuracy than other 

methods and outperform the empirical biomarkers, indicating the great potential of applying 

our outlier-immunized common harmonic waves in the early diagnosis of AD.

3) Identifying Harmonic-Based Alterations on PET Imaging Data: Given the 

outlier-immunized common harmonic waves Ψg estimated by our proposed method, the new 

neuroimaging biomarkers can be extracted by (11). Since their effective classification ability 

has been validated in Section III-C2, we further investigate the harmonic-based alterations 

(significant neuroimaging biomarkers) that are related with the development and progression 

of AD.

For amyloid data, the total harmonic energy for each instance is firstly calculated via 

E = ∑p = 1
P E(ψp), and then the total energy boxplot for the CN, EMCI and LMCI patient 

groups is shown in Fig. 7(a), where the total energy of the LMCI group is significantly 

higher (p < 10−4) than that of the CN and EMCI groups. However, we cannot find a 

significant total energy difference (p = 0.0369 > 0.01) between the CN and EMCI patient 

groups. Moreover, we visualize the distribution of total harmonic energy in Fig. 7(b), with 

similar findings as the boxplot. Second, we measure the average energy of each harmonic 

wave for CN and LMCI group, as shown in the second and first layers in Fig. 7(c). 

Additionally, the corresponding Fisher score JF is calculated to express the energy difference 

magnitude for each harmonic wave, which is illustrated in the third layer in Fig. 7(c), 

where the common harmonic waves showing the significant energy difference (p < 0.01) 

are tagged with star ‘★’ Furthermore, the energy difference between CN and LMCI at 
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each harmonic wave is shown in Fig. 7(d). For the tau-PET imaging data, the total energy 

distribution and harmonic-specific energy difference are similar to the results of amyloid 

data, as shown in Fig. 7(e)-(h). These results demonstrate that the deposition of amyloid 

peptides and aggregation of tau tangles are associated with the progression of AD. In 

comparison, for the FDG-PET modality, we observe that the CN group has a significantly 

higher total energy (p < 0.01) than the LMCI group, while there is no significant total energy 

difference for the CN/EMCI and EMCI/LMCI comparisons (shown in Fig. 7(i)-(l)). These 

results show that the harmonic energy level of FDG can reflect the neurodegeneration of 

AD development. These significant harmonic waves (significant neuroimaging biomarkers) 

may play important roles in identifying the spreading of pathological burdens across brain 

networks.

4) Discovering Association Between Clinical Indicators and Significant 
Neuroimaging Biomarkers: As described in Section III-C3, some significant 

neuroimaging biomarkers based on our outlier-immunized common harmonic waves are 

detected via the t-test on PET imaging data, as shown in Fig. 7(c), (g) and (k). 

Therefore, we are interested in further research on whether there is a significant association 

between clinical indicators and our significant neuroimaging biomarkers In this experiment, 

theGLMis applied to predict the MMSE score using our neuroimaging biomarkers. We 

select the top 4 significant harmonic waves of each modality forGLManalyses and plot 

the statistical results in Fig. 8. It is clear that (1) the neuroimaging biomarkers based or 

the first common harmonic wave ψ1 manifest a significant association (p < 10−6) with the 

MMSE score on amyloid, tau and FDG data (shown in Fig. 8(a), (h) and (i)). Since the 

first common harmonic wave is a constant vector, its corresponding neuroimaging biomarker 

E(ψ1) represents the summation of the SUVR score. These results support the evidence that 

amyloid deposition, tau aggregation, and FDG levels are hallmarks of AD, which can be 

used for AD study; (2) The significan neuroimaging biomarkers of amyloid-PET (in the top 

of Fig. 8) anc tau-PET (in the middle of Fig. 8) are negatively correlated with MMSE scores, 

while the significant neuroimaging biomarkers of FDG-PET (in the bottom of Fig. 8) are 

positively associated with MMSE scores, which is consistent with the findings in Section 

III-C3. These results indicate the potential of the new neuroimaging biomarkers identified by 

our outlier-immunized common harmonic waves in predicting early AD cognitive decline.

IV. Discussion

A. Parameter Pruning

Our proposed method for estimating outlier-immunized common harmonic waves exists 

three parameters: the harmonic dimension parameter P , the hyperparameter β and the 

optimized parameter H.

As mentioned in Section II-A, since the higher frequency harmonic waves tend to be 

sensitive to potential noise, we determine to use only the smallest P  eigenvectors Φs
P

instead of the whole eigenvectors Φs. According to the reconstruction loss calculated by 

matrix norm between original Laplacian matrix Ls and the reconstructed Laplacian matrix 

Ls
P = (Φs

P)TΛPΦs
P with ΛP  as the diagonal matrix of the first P  eigen-value of the Laplacian 
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matrix Ls, the dimension P  is determined, which is located at the stable point such that the 

reduction in reconstruction loss is marginal as P  increases.

In terms of hyperparameter selection, the grid search method is applied to select the optimal 

β based on the classification accuracy of real data.

As we have discussed before, the main point of our algorithm is to find an appropriate θ for 

our solution, θ is more accurate if we have a bigger H, but when we select an oversize H, 

the time we cost will be too much, and the solution seems to be non-sensitive. Therefore, 

we determine the parameter by grid search method, we choose H from 10 to 150 with the 

interval of 10, and identify the optimal H based on the convergence performance of the 

algorithm.

Finally, we fix the harmonic dimension P = 60, the optimal parameter β = 0.1 and H = 100 in 

all our experiments.

B. Computational Complexity Analysis

The complexity of the Frank-Wolfe algorithm in algorithm 1 is highly related to that of SVD 

decomposition and matrix multiplication. In SVD decomposition, U and V  are (N × N) and 

(P × P) matrices, respectively. Constructing these matrices has a time complexity of O(N3), 
while matrix multiplication has the same time complexity of O(N3). In the whole algorithm, 

the maximal iteration number is H, and the number of samples is m; therefore, optimizing 

algorithm 1 has the time complexity of O(mHnN3), where n is the iteration number of the 

Frank-Wolfe algorithm. Compared with the other methods, such as the interior-point solver 

SEDUMI, the Frank-Wolfe algorithm has the lowest time complexity [41], [42]. The inner 

loop of the algorithm 1 provides all updated individual harmonic waves {Φs} for the external 

loop of the algorithm 1; thus, the whole algorithm 1 has a time complexity of O(KmHnN3)
with K as the iteration number of the algorithm 1.

C. Convergence Analysis

As stated in Section II-B, the numerical scheme is divided into two steps. First, all the 

individual harmonic waves {Φs} are solved by the Frank-Wolfe algorithm. By selecting a 

series of discrete θ, the objective function (7) is convergent according to Lemma 1 and 

Lemma 2 in Appendix A. For the set of different θ, we can obtain the convergent solution 

as proved in Lemma 3 in Appendix A. Second, we adopt the Weiszfeld algorithm to solve 

common harmonic waves Ψ. Lemma 5 in Appendix A provides a detailed proof of the 

convergence of the objective function (8). Finally, we can prove that the whole algorithm is 

convergent, as shown in Theorem 6 in Appendix A.

D. Evaluation of Computational Efficiency and Accuracy

For the sake of studying the computational efficiency and accuracy of different 

neuroimaging biomarkers, we conduct an experiment examining the computational time 

and classification accuracy of those existing works with best performance values, arithmetic 

mean Φa, pseudo manifold mean Φp, polynomial approximation Φc, Fréchet mean Φf and 
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geometric median Φg on synthesized data. The synthesized data is generated by adding 

the gaussian distribution on the first-given two kinds of 148 × 1 vector, which can be 

regarded as two different categories. Notably, the outlier is the point that far away from 

those normal synthesized data. The results are shown in Table III. Those results show that 1) 

the computational efficiency of Φa and Φp have a significant superiority than the others; 2) 

the geometric median Φg has achieved the best classification, the Fréchet mean Φf take the 

second, and the geometric median Φg has the least effect from the outliers, which indicates 

the robustness of our proposed approach to outliers.

E. Limitations and Future Work

Several limitations of the proposed method should be mentioned. (1) Computational cost: 
Although the proposed numerical scheme can theoretically guarantee convergence, it is 

computationally challenging to have large node numbers in the brain network analysis. 

In our future work, we plan to develop an effective optimization scheme to decrease 

the computational complexity while maintaining convergence. Such a method will be 

more reliable and reproducible for increasingly large brain networks. (2) Small samples: 
Compared to other methods, the experimental results demonstrate the enhanced performance 

of our estimated outlier-immunized common harmonic waves in the early AD diagnosis. 

However, our previously proposed common harmonic waves estimation method is still 

biased. This is mainly because estimating the common harmonic waves with a small 

number of brain networks in a high-dimensional manifold space is a challenging issue. 

Therefore, we will collect more brain networks to confirm the unbiased common harmonic 

waves estimation in the future. (3) Global nature of harmonic waves: Same as the Fourier 

bases, the common harmonic waves can be used as bases to project the brain signal to the 

frequency domain for the classification of AD. However, the global nature makes common 

harmonic waves impossible to discover disease-related brain regions and characterize the 

local neuropathological burdens propagation patterns. We have made some efforts in terms 

of harmonic localization [33], [45], however, these methods are still sensitive to outlier 

contamination. Thus, we will develop our proposed method into the localized common 

harmonic waves estimation version, which will be more powerful for brain network analysis.

V. Conclusion

In this paper, we propose a manifold learning method to estimate outlier-immunized 

common harmonic waves on the Stiefel manifold. Specifically, we measure the common 

harmonic waves as the geometric median of all individual harmonic waves. The outlier-

immunized common harmonic waves offer a new window to discover the harmonic-based 

alterations related to AD propagation patterns and develop a new neuroimaging biomarker 

for forecasting early AD. We have demonstrated that our proposed method is more robust 

than other comparative approaches in dealing with outliers in synthetic data. In the extensive 

experiments on the ADNI dataset, our manifold learning approach achieves more consistent 

and reasonable results than existing methods that simply apply Euclidean operations on 

brain networks. In our future work, we plan to apply our outlier-immunized common 

harmonic waves to explore the potential pathogenic mechanism of other neurological 

disorders.
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Appendix A

Lemma 1: When θ ≥ θmax = λmax − β
16 2N P , fθ(Φs) is a concave program, and only if 

θ ≤ θmin = λmin − βP
8N (ν)3

, fθ(Φs) is a convex conic program.

Proof: When θ ≥ θmax, ∇fθ(Φs) ≺ 0, ∇2fθ(Φs) ≺ 0; when θ ≤ θmin, ∇fθ(Φs) ≻ 0, ∇2fθ(Φs) ≻ 0. 

∇fθ(Φs) and ∇2fθ(Φs) are shown as:

∇fθ (Φs) = 2 (L − θIN) Φs − βΨ
2 P − Tr (Φs

TΨ)
∇2fθ (Φs) = 2 (L − θIN) − βPIN

4n (P − Tr (Φs
TΨ))3

(12)

Consequently, fθ(Φs) is a strictly concave function in terms of Φs when θ ≥ θmax, and fθ(Φs) is 

a strictly convex function in terms of Φs when θ ≤ θmin.■

Lemma 2: The extreme point set of {Φs ∈ ℝN × P ∣ Φs
TΦs ≺ IP} is

{Φs ∈ ℝN × P ∣ IP ≻ Φs
TΦs, Tr(Φs

TΦ) = P}

Proof: Let Xs be an extreme point of {Φs ∈ ℝN × P ∣ Φs
TΦs ≺ IP}. The singular 

value decomposition of Xs is Xs = ∑j = 1
P σjUjV j

T, where 0 ≤ σ1 ≤ σ2 ≤ ⋯ ≤ σP ≤ 1. Thus, 

Xs
TXs = ∑j = 1

P σj
2V jV j

T and Tr(Xs
TXs) = ∑j = 1

P σj
2.

Supposing that σ1 < 1, we define

Y = (2σ1 − 1)U1V 1
T + ∑

j = 2

P
σjUjV j

T, Z = U1V 1
T

+ ∑
j = 2

P
σjUjV j

T

Then, we have Y ≠ Z,X = 1
2Y + 1

2Z, and

Cai et al. Page 18

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Y TY = (2σ1 − 1)2V 1V 1
T + ∑

j = 2

P
σj

2V jV j
T

≺ ∑
j = 2

P
V jV j

T = IP

ZTZ = V 1V 1
T + ∑

j = 2

P
σj

2V jV j
T ≺ ∑

j = 2

P
V jV j

T = IP

Therefore, Xs is not the extreme point, and the contradiction proves that σ1 = σ2 = ⋯ = σP = 1, 

which completes the proof.■

Lemma 3: The algorithm in Step 1 of Section II-B terminates in at most H iterations.

Proof: For the H-th iteration, θH = θmax; thus, fθH(Φs) in the H-th iteration is a strictly concave 

function in terms of Φs.

Suppose Φs
1TΦs

1 ≺ IP and Φs
∗TΦs

∗ = IP; thus, Φs
∗ − Φs

1 ≠ 0 and fθH(Φs
1 + α(Φs

∗ − Φs
1)) is strictly 

concave with respect to the optimal step size α, estimated via line search strategy.

In addition, we have

∇fθH (Φs
1)TΦs

∗ = arg min
ΦTΦ ≺ IP

Tr ∇fθH (Φs
1)TΦ ≤ ∇fθH (Φs

1)TΦs
1

Thus, we conclude that

dfθH (Φs
1 + α(Φs

∗ − Φs
1))

dα ∣α = 0

= Tr ∇fθH (Φs
1)T (Φs

∗ − Φs
1) ≤ 0

Therefore, fθH(Φs
1 + α(Φs

∗ − Φs
1)) is strictly decreasing when 0 ≤ α ≤ 1. Consequently, when we 

take the optimal step size α∗ = 1, the optimal solution Φs
t = Φs

t − 1 + α∗(Φs
t − 1∗ − Φs

t − 1) = Φs
t − 1∗

and hence Φs
tTΦs

t = Ip, which is the convergence criterion. Consequently, the algorithm in 

Step 1 of Section II-B terminates in at most H iterations.■

Theorem 4: The algorithm in Step 1 of Section II-B is convergent.

Proof: The dual question of solving the objective function (5) is maxθ minΦsTΦ ≺ IP fθ(Φs).

Specifically, for any θ1 < θ2 < ⋯ < θi < ⋯ ≤ θmin,

Cai et al. Page 19

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 September 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fθ2 (Φs
2 ∗ ) = Tr LsΦs

2 ∗ Φs
2 ∗T + β Tr IP − Φs

2 ∗T Ψ
+ θ2 P − Tr Φs

2 ∗T Φs
2 ∗

> Tr LsΦs
2 ∗ Φs

2 ∗T + β Tr IP − Φs
2 ∗T Ψ

+ θ1 P − Tr Φs
2 ∗T Φs

2 ∗

≥ min
IP ≻ Φs

TΦs

Tr(LsΦsΦs
T) + β Tr(IP − Φs

TΨ)

+ θ2 (P − Tr (Φs
TΦs)) = fθ2 (Φs

2 ∗ )

where Φs
i ∗  is the optimal solution of minΦsTΦ ≺ IP fθi(Φs), so fθi(Φs

i ∗ ) is a strictly increasing 

function with respect to θ, and fθ1(Φs
1 ∗ ) < fθ2(Φs

2 ∗ ) < ⋯ < fθi(Φs
i ∗ ). Therefore, the dual 

question has no optimal solution when θ < θmin.

In addition, fθ(Φs) is a concave program when θ ≥ θmax in Lemma 1. Then, for 

θmax ≤ θ1 < θ2 < ⋯ < θi, the global minimizers of {fθ1(Φs), fθ2(Φs), …, fθi(Φs)} are all attained at 

an extreme point of the feasible region {Φs ∈ ℝN × P ∣ IP ≻ Φs
TΦs, Tr(Φs

TΦ) = P} in Lemma 

2; thus, the optimal values of {fθ1(Φs), fθ2(Φs), …, fθn(Φs)} are all the same as the objective 

function (5). Therefore, when θ ≥ θmax, there are infinitely many optimal solutions.

Therefore, these results suggest a continuous method to solve the dual question by obtaining 

the optimal solution of maxθ fθ(Φs
∗) for the increasing sequence {θi} ∈ [θmin, θmax].

Combining Lemma 3, we know that the optimal solution of maxθ fθ(Φs
∗) appears at most H

iterations; therefore, the algorithm in Step 1 of Section II-B is convergent.■

Lemma 5: The numerical scheme using the Weiszfeld updating is as follows:

Ψ(k + 1) = expΨ(k) − ∑
s = 1

m
∇Ψ(k)FΨ

= expΨ(k) = − ∑
s = 1

m (Ψ(k)Φs
TΨ(k) − Φs)

(P − Tr (Φs
TΨ(k)))

(13)

in solving:

FΨ = arg min
Ψ

∑
s = 1

m
d (Φs, Ψ)

= arg min
Ψ

∑
s = 1

m
P − Tr (Φs

TΨ)
(14)

is convergent.

Proof: For the points Ψ, Φ1, Φ2, …, Φs in the convex set of Stiefel manifold ℳ, we use 

d(Φ1, Φ2) to denote the geodesic distance between the two points Φ1 and Φ2 on the Stiefel 

manifold. The k-th iterations in the Weiszfeld algorithm:
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FΨ(k) = ∑
s = 1

m
d (Ψ(k), Φs)

The corresponding function is defined on the tangent plane:

F Ψ(k) = ∑
s = 1

m
d Ψ(k), Φs

(Ψ(k + 1), Φs) is manifold point (Ψ(k + 1), Φs) corresponding to the tangent plane point at Ψ(k). 
Note that − ∇ΨFΨ < 0, and the exponential map is locally diffeomorphic onto a neighborhood 

of Ψ(k); therefore:

F Ψ(k + 1) ≤ F Ψ(k) = FΨ(k) (15)

The distance between two points on a positively curved manifold is smaller than the distance 

between their projections on the tangent plane according to Toponogov’s theorem. This 

implies:

FΨ(k + 1) ≤ F Ψ(k + 1) ≤ FΨ(k)

The last inequality is from (15). because the objective function (14) is continuous, the 

objective function (14) is convergent.■

Theorem 6: The Algorithm 1 is convergent.

Proof: In Theorem 4, we show that Step 1 in Section II-B is convergent, and the 

convergence of Step 2 in Section II-B is proven in Lemma 5; therefore, it is easy to conclude 

that the Algorithm 1 is convergent.■
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Fig. 1. 
The traditional methods (blue arrow) identify the average brain network as a standard 

reference by calculating the arithmetic mean of all adjacency matrices on Euclidean space, 

which destroy the topological property of brain network. However, our manifold learning 

method (red arrow) estimates the outlier-immunized common harmonic waves on the Stiefel 

manifold by calculating the geometric median of all individual harmonic waves (yellow 

circle), which not only respects the brain network topology but is also insensitive to outliers 

(gray circle).
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Fig. 2. 
Illustration of optimizing common harmonic waves. Individual harmonic waves {Φs} 

(yellow circle), an outlier (black circle), and k-th estimated common harmonic waves Ψ(k)

(purple circle) are resided on the Stiefel manifold ℳ(N, P ) (blue surface). The corresponding 

projected points (triangles) of individual harmonic waves {Φs} are on the tangent plane TΨ(k)

(green flat plane) of ktℎ manifold center Ψ(k). The mean tangent (red triangle) is obtained by 

combining all gradient directions (solid arrow). Finally, map the mean tangent back to the 

updated manifold center Ψ(k + 1) (red circle) on the Stiefel manifold.
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Fig. 3. 
Illustration of manifold centers estimated via arithmetic mean Ψa (b), Fréchet mean Ψf

(c) and geometric median Ψg (d). The top two rows show 8 orthonormal matrices (blue) 

constructed through rotating the identity matrix (a) with different rotation angles and 2 

outliers (yellow). The evaluated results, all rotation matrices, and optimization process are 

displayed on the Stiefel manifold (e).
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Fig. 4. 
The robustness test results of geometric median (red curve) and Fréchet mean (blue curve) 

with regard to outliers. The black star ‘**’ indicates that our results are significantly better 

(p < 0.0001) than the Fréchet mean.
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Fig. 5. 
The replicability test results of (a) Arithmetic mean, (b) Pseudo manifold mean, (c) Fréchet 

mean, (d) Polynomial approximation and (e) Geometric median, where the number of failed 

replicability tests is reflected by the color of cortical surface.
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Fig. 6. 
The classification results of using different neuroimaging biomarkers and empirical 

biomarkers on CN/EMCI, EMCI/LMCI, and CN/LMCI comparison in PET imaging data. 

The star ‘*’ or ‘**’ stands for the significant performance difference between our method 

and the other methods with p < 0.1 or p < 0.01 based on the between-area correlation.
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Fig. 7. 
The harmonic-based alterations among CN, EMCI and LMCI discovered by our outlier-

immunized common harmonic waves on amyloid-PET (top), tau-PET (middle) and FDG-

PET (bottom) data. Top: (a)–(b) the total energy distribution of CN, EMCI, and LMCI on 

amyloid deposition. (c)–(d) the harmonic-specific energy difference between CN and LMCI 

group, where the significant harmonic waves are highlighted with star ‘★’. Middle: in the 

context of tau tangle. Bottom: in the context of FDG level.
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Fig. 8. 
The association analyses between significant neuroimaging biomarkers and clinical indicator 

(MMSE) on amyloid-PET (top), tau-PET (middle) and FDG-PET (bottom) data. The 

subjects in CN and LMCI group are represented in red and blue dot, respectively. In 

addition, the statistical results (R value and p value) are also provided in each panel.
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TABLE I

List of Notations

Notation Remark

Ls The Laplacian matrix of the s-th graph G
Φs Individual harmonic waves of Ls

Ψ Outlier-immunized common harmonic waves

Λs The augmented Lagrangian multiplier of Ls

ℝn n-dimensional real space

ℳ The Stiefel manifold

TΨ, Δ The tangent space and tangent vector on the Stiefel manifold at Ψ
λmax, λmin The maximum and minimum eigenvalues of Laplacian matrix L

exp The exponential map

∇XF The gradient of F  at point X in the manifold space
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TABLE II

Statistics of PET Imaging Data in Experiment

Number of
Samples Gender Number Range of

Age
Average

Age CN EMCI LMCI

Amyloid

Male 450 55.0~91.4 73.4 136 184 130

Female 389 55.0~89.6 71.7 148 145 96

Total 839 55.0~91.4 72.6 284 329 226

Tau

Male 255 55.0~90.1 72.4 124 69 62

Female 269 55.0~89.9 70.3 177 44 48

Tatal 524 55.0~90.1 71.3 301 113 110

FDG

Male 592 55.0~91.4 73.9 169 182 241

Female 472 55.0~89.6 72.2 166 148 158

Total 1064 55.0~91.4 73.1 335 330 399

IEEE J Biomed Health Inform. Author manuscript; available in PMC 2023 September 15.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cai et al. Page 34

TABLE III

The Performance of Several Relevant Methods on Synthesized Data

Methods
Computational

efficiency(s)
Accuracy

Without outliers With outliers

Arithmetic meanΦa 0.991 0.884±0.013 0.643±0.026

Pseudo manifold meanΦp 1.476 0.891±0.012 0.647±0.027

Polynomial approximationΦc 20.083 0.921±0.013 0.689±0.026

Fréchet meanΦf 26.383 0.933±0.014 0.703±0.029

Geometric medianΦg 28.760 0.951±0.011 0.752±0.028
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